

Biological Risk Assessment Guidance: Production of mRNA Vaccines

Dr Sarita Groenewald

Table of Contents

1.	Background	. 1
2.	Definitions	. 2
Figu	re 1. Designing and producing an mRNA vaccine	. 2
Tab	le 1. Production of an mRNA Vaccine: the steps involved and biological risk assessment .	. 3
Ann	exure 1. Risk Analysis Framework	. 5

1. Background

- Depending on the pathogen (a bacteria or virus) that is being targeted, different vaccine technologies could be used to generate an effective vaccine. There are multiple ways to develop a vaccine¹. Synthetic IVT mRNA has emerged as a next-generation gene-based vaccine technology with the development of in vitro transcription (IVT) and plasmid DNA methods.
- Researchers at UCT develop and evaluate the efficacy and immunogenicity of <u>messenger RNA</u> (<u>mRNA</u>) vaccines in pre-clinical animal models and clinical trials. In some cases, these mRNA vaccines are developed in collaboration with national and international partners which necessitates the transport or importation of the candidate vaccines for R&D purposes. Trained researchers in registered facilities perform the laboratory procedures.
- mRNA vaccines consist of synthetic in vitro transcribed (IVT) mRNA molecules, encapsulated in lipids to protect the fragile RNA and formulate it as a vaccine. The mRNA vaccine production process is done exclusively in vitro, NO living pathogens are used or produced.
- The mRNA is non-infectious and non-integrating, it can only encode for a single protein/antigen in vivo and is NOT self-replicating, eliminating the risk to human and animal health and the environment. In Figure 1 and Table 1 below, the steps involved in mRNA vaccine production, the biological risk assessment of each step and links to information videos and articles are presented. The Risk Analysis Framework is described in Annexure 1.
- Please refer to the following video for an overview of <u>How mRNA vaccines work</u> (start at 1:35), the World Health Organisation Information document on <u>How vaccines are developed</u> and a review of the principles, delivery and clinical translation of mRNA vaccines for infectious diseases².

¹ <u>Understanding Six Types of Vaccine Technologies</u> | Pfizer

² Chaudhary, N., Weissman, D. & Whitehead, K.A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20, 817–838 (2021). <u>https://doi.org/10.1038/s41573-021-00283-5</u>

2. Definitions

- AntigenA foreign molecule or substance that triggers an immune response in the body,
specifically activating lymphocytes to produce antibodies against it.
- **mRNA Vaccine** A type of gene-based vaccine that uses synthetic messenger RNA (mRNA) to deliver the instructions/sequences for making a harmless piece of protein identical to one found in a particular pathogen (virus or bacterium) to the vaccinated person or animal's cells. The protein or protein fragment (antigen) will generate an immune response.
- **Plasmid** Small, circular, double-stranded DNA molecule that naturally exists in bacterial cells and can replicate independently. Researchers can insert a gene of interest into a plasmid, which then replicates the gene when it copies itself. This allows the production of large quantities of the desired gene sequence.

Transcription The process by which the genetic information in a strand of DNA is copied into a new molecule of messenger RNA (mRNA) that carries the information to make a protein (the target antigen).

Figure 1. Designing and producing an mRNA vaccine.³

³ Adapted from Fang, E., Liu, X., Li, M. et al. Advances in COVID-19 mRNA vaccine development. Sig Transduct Target Ther 7, 94 (2022). <u>https://doi.org/10.1038/s41392-022-00950-y</u>

		Considerations for	Notes and additional
	step in minina vaccine	Riological Pick	information
	production (rig r)	Assassments	mormation
1	Isolate and sequence the	Initial isolation of pathogon	Often not part of independent
1.	nothogen's genome		mRNA vaccine development
	patriogen's genome	level Early deactivation and	projects Pesearchers must
		subsequent routine rDNA	specify in research approval
		Biological rick: Variable (BSI 1	applications where Step 1 will
		2) depending on the pathogen	bolwas parformed Open the
		and is limited to the initial	pethogon's genome has been
		stages of the process	sequenced the sequence data
			are accessible on public
			databases or other repositories
2	In silico analysis and mRNA	In silico sequence analysis and	Antigen selection: the goal is to
2.	vaccine design to identify an	vaccine design (on a computer	select one that will trigger an
	appropriate antigen and	or via computer software) No	immune response that protects
	corresponding target gene	organisms are involved	against the nathogen
	sequence	Biological risk: None	
3	The target antigen's gene	Only the target gene(s) is	mRNA Synthesis for the
0.	sequence is chemically	chemically synthesised or	Development of Vaccines and
	synthesised and cloned	amplified from cloned	Therapeutics (Merck)
	using standard recombinant	sequences using PCR.	······································
	DNA (rDNA) technology.	The <i>E</i> . <i>coli</i> used for cloning	Plasmid DNA preparation for
	The plasmid DNA containing	experiments are general.	<u>mRNA synthesis</u>
	only the target antigen gene	routinely used, non-pathogenic	This and all subsequent steps
	sequences is prepared using	laboratory strains. The DNA is	are conducted with only the
	<i>E. coli</i> lab strains and is	purified before the subsequent	gene or gene fragment of the
	subsequently purified.	steps.	original pathogen. It does NOT
	The plasmid DNA is	The described methods are low-	self-replicate or behave like the
	linearised in vitro using	risk, routine molecular biology	pathogen from which it
	restriction enzymes.	procedures.	originates.
		Biological risk: Very low (BSL1)	
4.	mRNA production by in vitro	This enzymatic reaction takes	mRNA synthesis by in vitro
	transcription: the linear DNA	place in a test tube or bioreactor	transcription - YouTube
	template is transcribed into	(large scale) and no live	
	an mRNA molecule by the	organisms are involved. Due to	
	enzyme, DNA-dependent	the composition of the reaction	
	RNA Polymerase. The mRNA	medium, the only possible	
	consists of the coding	reaction is transcription.	
	region, 5' and 3'	Biological risk: Very low (BSL1)	
	untranslated regions (UTRs)		
	that regulate mRNA		
	translation, a 5' Cap and a 3'		
	Poly(A) tail.		
5.	Purification of mRNA and	Enzymatic, chemical and	The only biological component
	removal of DNA template	chromatographic processes. No	after this step is the mRNA that
	and double-stranded RNA.	living organisms are involved,	encodes the target antigen's
		Just mRNA molecules.	protein sequence.
1		Biological risk: Verv low (BSL1)	

Table 1. Production of an mRNA Vaccine: the steps involved and biological risk assessment

6. Encapsulation of fragile	LNPs are stable, biodegradable,	Lipid nanoparticles					
mRNA in ionisable lipid	non-viral delivery vectors that						
nanoparticles (LNPs) that	protect the fragile mRNA from						
deliver the mRNA to the	degradation and deliver it to the						
correct location inside the	target cells in the body.						
body during vaccination.	Good laboratory practices (GLP)						
7. LNPs are filtered to remove	are adequate to mitigate						
the non-aqueous solvent	potential risks of exposure to						
and to ensure sterility.	LNPs in the laboratory.						
	Biological risk: Very low (BSL1)						
8. The mRNA-LNP vaccine	The mRNA-LNP vaccine	How are vaccines developed?					
formulation is used for	formulation is not harmful to						
vaccination. An immune	human or animal health.						
response is triggered in the	Biological risk: Low risk of side						
vaccinated person or anim	al effects, toxicity, or opportune						
when the mRNA is	infections – to be defined and						
translated in vivo.	managed clinically.						
Overall biosafety risk conclusion: The production and handling of mRNA-LNP vaccines pose a very							
low risk of exposure to infectious agents for humans, animals, or the environment.							

Annexure 1. Risk Analysis Framework⁴

- Hazard is any potential source of harm
- Harm is an adverse outcome or impact
- Exposure to a hazard is required before harm can occur
 - \Rightarrow hazard $\xrightarrow{exposure}$ harm
 - Risk is the probability of harm, of a certain magnitude, occurring
 - ⇒ Risk = [likelihood of exposure/release x consequence of exposure/release]

		Likelihood of exposure/release				
		Rare	Unlikely	Possible	Likely	Almost certain
	Severe	Medium	Medium	High	Very high	Very high
0	Major	Medium	Medium	High	High	Very high
of exposure/ release	Moderate	Low	Low	Medium	High	High
	Minor	Very low	Low	Low	Medium	Medium
	Negligible	Very low	Very low	Low	Medium	Medium

Risk estimate descriptions and required actions

- Very low. If an incident occurred, harm would be very unlikely. Undertake the laboratory activity with the existing risk control measures in place.
- Low. If an incident occurred, there would be a small likelihood of harm. Use risk control measures if needed.
- **Medium.** If an incident occurred, harm would result that would require basic medical treatment and/or simple environmental measures. Additional risk control measures are advisable.
- **High.** If an incident occurred, harm would result that would require medical treatment and/or substantial environmental measures. Additional risk control measures must be implemented before the laboratory activity is undertaken.
- Very high. If an incident occurred, a permanent, impairing harm or death and/or extensive environmental effects would be likely. Consider alternatives to doing the laboratory activity. Comprehensive risk measures must be implemented to ensure safety.

Likelihood estimates descriptions

- **Rare:** almost impossible to occur (<5%)
- Unlikely: not very possible to occur (5-29%)
- **Possible:** might occur (30-69%)
- Likely: very possible to occur (70-94%)
- Almost certain: highly probable to occur (≥95%)

Consequence estimates descriptions

- Negligible: Trivial incident or near miss requiring reporting and follow-up
- Minor: Incident with self-limiting consequences
- Moderate: Incident that requires medical treatment and/or has insignificant environmental consequences
- **Major:** Incident with potential lost time due to infection but non-permanent consequence and/or limited environmental impact
- Severe: Potential fatality or serious illness with permanent disability and/or serious environmental impact

⁴ WHO, Risk assessment (Laboratory biosafety manual, 4th edition and associated monographs, 2020) ISBN 978-92-4-001145-8 (electronic version <u>https://www.who.int/publications/i/item/9789240011311</u>)